skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Su, Ting"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Optimizing compilers, such as LLVM, generatedebug informationin machine code to aid debugging. This information is particularly important when debugging optimized code, as modern software is often compiled with optimization enabled. However, properly updating debug information to reflect code transformations during optimization is a complex task that often relies on manual effort. This complexity makes the process prone to errors, which can lead to incorrect or lost debug information. Finding and fixing potential debug information update errors is vital to maintaining the accuracy and reliability of the overall debugging process. To our knowledge, no existing techniques can rectify debug information update errors in LLVM. While black-box testing approaches can find such bugs, they can neither pinpoint the root causes nor suggest fixes. To fill the gap, we propose thefirsttechnique torobustifydebug information updates in LLVM. In particular, our robustification approach can find and fix incorrect debug location updates. Central to our approach is the observation that the debug locations in the original and optimized programs must satisfy aconformance relation. The relation ensures that LLVM optimizations do not introduce extraneous debug location information on the control-flow paths of the optimized programs. We introducecontrol-flow conformance analysis, a novel approach that determines the reference updates ensuring the conformance relation by observing the execution of LLVM optimization passes and analyzing the debug locations in the control-flow graphs of programs under optimization. The determined reference updates are then used to check developer-written updates in LLVM. When discrepancies arise, the reference updates serve as the update skeletons to guide the fixing. We realized our approach as a tool named MetaLoc, which determines proper debug location updates for LLVM optimizations. More importantly, with MetaLoc, we have reported and patched 46 previously unknown update errors in LLVM. All the patches, along with 22 new regression tests, have been merged into the LLVM codebase, effectively improving the accuracy and reliability of debug information in all programs optimized by LLVM. Furthermore, our approach uncovered and led to corrections in two issues within LLVM’s official documentation on debug information updates. 
    more » « less
    Free, publicly-accessible full text available June 10, 2026
  2. The large demand of mobile devices creates significant concerns about the quality of mobile applications (apps). Developers heavily rely on bug reports in issue tracking systems to reproduce failures (e.g., crashes). However, the process of crash reproduction is often manually done by developers, making the resolution of bugs inefficient, especially given that bug reports are often written in natural language. To improve the productivity of developers in resolving bug reports, in this paper, we introduce a novel approach, called ReCDroid+, that can automatically reproduce crashes from bug reports for Android apps. ReCDroid+ uses a combination of natural language processing (NLP) , deep learning, and dynamic GUI exploration to synthesize event sequences with the goal of reproducing the reported crash. We have evaluated ReCDroid+ on 66 original bug reports from 37 Android apps. The results show that ReCDroid+ successfully reproduced 42 crashes (63.6% success rate) directly from the textual description of the manually reproduced bug reports. A user study involving 12 participants demonstrates that ReCDroid+ can improve the productivity of developers when resolving crash bug reports. 
    more » « less